
www.umbc.edu

CMSC202
 Computer Science II for Majors

Lecture 07 –

Classes and Objects (Continued)

Dr. Katherine Gibson

Based on slides by Chris Marron at UMBC

www.umbc.edu

Last Class We Covered

• Object Oriented Programming
– Versus Procedural Programming

• Classes

– Members

• Member variables

• Member functions (class methods)

• Livecoding: Rectangle class

2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To understand more about classes in C++

– Learn the uses for access modifiers

– Discuss more types of methods

• Accessors

• Mutators

• Facilitators

• Constructors

– Overloading class methods

4

www.umbc.edu

Class Access Specifiers

www.umbc.edu

Access Specifiers

• In our definition for the DayOfYear class,
everything was public

– This is not good practice!

• Why?

– Encapsulation! We don’t want the end user to
have direct access to the data

– Why?

• May set variables to invalid values

 6

www.umbc.edu

Access Specifier Types

• We have three different options for
access specifiers, each with their own role:
– public

– private

– protected

• Used to specify access for member variables
and functions inside the class

7

www.umbc.edu

Toy Syntax Example

class Date {

 public:

 int m_month;

 private:

 int m_day;

 protected:

 int m_year;

};

8

www.umbc.edu

Public Access Specifier

• public

–Anything that has access to a Date object
also has access to all public member
variables and functions

• Normally used for functions

– But not all functions

• Need to have at least one public member

– Why?

9

www.umbc.edu

Private Access Specifier

• private

–Private member variables and functions can
only be accessed by member functions of the
Date class

–Cannot be accessed in main(), in other
files, or by other functions

• If not specified, members default to private

• Should specify anyway – good coding practices!

10

www.umbc.edu

Protected Access Specifier

• protected

–Protected member variables and functions
can only be accessed by:

• Member functions of the Date class

• Member functions of any derived classes

• (We’ll cover this in detail later)

11

www.umbc.edu

Access Specifiers for Date Class

class Date {

 ???????:

 void Output();

 ???????:

 int m_month;

 int m_day;

 int m_year;

};

12

www.umbc.edu

Access Specifiers for Date Class

class Date {

 public:

 void Output();

 private:

 int m_month;

 int m_day;

 int m_year;

};

13

www.umbc.edu

Other Member Functions

www.umbc.edu

New Member Functions

• Now that m_month, m_day, and m_year
are private, how do we give them values, or
retrieve those values?

• Write public member functions to provide
indirect, controlled access for the user

• Remember, there is an ideal:

–User only knows interface (public functions)
not implementation (private variables)

15

www.umbc.edu

Member Function Types

• There are many ways of classifying types, but
here are the ones we’ll use:

• Accessors (“Getters”)

• Mutators (“Setters”)

• Facilitators (“Helpers”)

16

www.umbc.edu

Member Function: Accessors

• Name starts with Get, ends with member name

• Allows retrieval of private data members

• Examples:
int GetMonth();

int GetDay();

int GetYear();

• Don’t generally take in arguments

17

www.umbc.edu

Member Function: Mutators

• Name starts with Set, ends with member name

• Allows controlled changing of the value
of a private data member

• Examples:
void SetMonth(int month);

void SetDay (int day);

void SetYear (int year);

• Don’t generally return anything
18

www.umbc.edu

Mutator for SetMonth()

• How would you design a good mutator for the
SetMonth() member function?

void Date::SetMonth(int month) {

 if (month >= 1 && month <= 12) {

 m_month = month;

 }

 else {

 m_month = 1; }

}

19

what’s wrong
with this
function?

www.umbc.edu

Better Mutator for SetMonth()

• This version of the SetMonth() member
function doesn’t use magic numbers!

void Date::SetMonth(int month) {

 if (month >= MIN_MONTH &&

 month <= MAX_MONTH) {

 m_month = month;

 } else {

 m_month = DEFAULT_MONTH; }

}

20

in what file
would you
store these
constants?

www.umbc.edu

Member Function: Facilitators

• Provide support for the class’s operations

• public if generally called outside function

• private/protected if only called by
member functions

• Examples:
void OutputMonth(); (public)

void IncrementDate(); (private)

21

www.umbc.edu

Date with Specifiers

class Date {

public:

 void Output ();

 int GetMonth();

 int GetDay();

 int GetYear();

 void SetMonth(int month);

 void SetDay (int day);

 void SetYear (int year);

private:

 int m_month;

 int m_day;

 int m_year;

};

22

for the sake of
brevity, we’ll

generally leave out
the accessors and

mutators when
showing examples

www.umbc.edu

Constructors

www.umbc.edu

Constructors

• Special methods that “build” (construct) an object

– Supply default values

– Initialize an object

• Automatically called when an object is created

– implicit: Date today;

– explicit: Date today(7, 28, 1914);

24

www.umbc.edu

Constructor Syntax

• Syntax:

– For prototype:

ClassName();

– For definition:

ClassName::ClassName() { /* code */ }

• Notice that...

– There is no return type

– Same name as class!

25

www.umbc.edu

Constructor Definition

Date::Date (int month, int day,

 int year)

{

 m_month = month;

 m_day = day;

 m_year = year;

}

• What is missing from this constructor?
– Technically, nothing -- but...
–Validation of the information being passed in!

26

www.umbc.edu

Better Constructor Definition
Date::Date (int month, int day,

 int year)

{

 if (m > 0 && m <= 12) {

 m_month = month; }

 else { m_month = 1; }

 if (d > 0 && d <= 31) {

 m_day = day; }

 else { m_day = 1; }

 if (y > 0 && y <= 2100) {

 m_year = year; }

 else { m_year = 1; }

}

27

is this the
best way to
handle this?

what might
be a better
solution?

www.umbc.edu

Best Constructor Definition

Date::Date (int month, int day,

 int year)

{

 SetMonth(month);

 SetDay(day);

 SetYear(year);

}

• This allows us to reuse already written code

28

www.umbc.edu

Time for…

29

www.umbc.edu

Livecoding Exercise

• Update our Rectangle class with

– Constructor

– Accessors and Mutators

– Class methods to:

• Calculate area

• Calculate perimeter

• Check if it’s Square

• Print the rectangle’s dimensions

• Create a main() function and use it!

30

www.umbc.edu

Designing a Class

• Ask yourself:
– What properties must each object have?

• What data-types should each of these be?
• Which should be private? Which should be public?

– What operations must each object have?
• What accessors, mutators, facilitators?

– What parameters must each of these have?
» Const, by-value, by-reference, default?

– What return value should each of these have?
» Const, by-value, by-reference?

• Which should be private? Which should be public?

• Rules of thumb:
– Data should be private (usually)
– Operations should be public (usually)
– At least 1 mutator and 1 accessor per data member (usually)

 31

www.umbc.edu

Announcements

• Project 1 has been released

• Found on Professor’s Marron website

• Due by 9:00 PM on February 23rd

• Get started on it now!

• Make sure to read and follow the
coding standards for this course!

• Next time: Wrap Up and Review for Exam 1!

32

